Производство
Машинное зрение
Клиент — одна из производственных площадок АО «НПО «Аконит». Компания производит конвейерные ролики и подъемно-транспортное оборудование. Продукция АО «НПО «Аконит» эксплуатируется более чем в 80 регионах России и востребована в металлургии, химии, угольной, энергетической и цементной промышленности.
На производственной линии АО «НПО «Аконит» происходит резка металлических труб для изготовления конвейерных роликов. Ежемесячно через линию проходит 600-800 тонн труб.
Качество поставляемых труб сильно варьируется: продукция поступает от разных заводов, и не все поставщики выдерживают требуемые стандарты. Из-за этого в партию регулярно попадают трубы с браком. При транспортировке труб внутри предприятия также могут появляться дефекты.
Если труба с браком попадает в зону резки, она вызывает поломку станка (клин фрезерного узла), остановку линии и экстренный ремонт. Простой линии может стоить до 1 млн рублей в день.
Ранее контроль качества осуществлялся вручную — оператор визуально осматривал трубы перед подачей в станок. Но при объёмах в 600–800 тонн в месяц такой подход оказался недостаточно надёжным: человеческий фактор, усталость и ограниченное время на осмотр приводили к пропуску дефектов.
Предприятию необходимо было минимизировать простой оборудования и затраты на ремонт, исключив попадание бракованных труб в резку. Внедрить автоматизированный контроль качества.
Мы внедрили ML Sense — систему машинного зрения для промышленного контроля качества в реальном времени.
1. Анализ производственной линии
Мы начали с выезда на площадку для предпроектного обследования. Изучили участок от накопителя до подающих роликов — именно здесь труба должна проходить проверку, прежде чем попадёт в зону резки. Задача была чёткая: встроить систему в существующую линию без изменений в конструкции.
2. Разработка модуля контроля
Для охвата всей поверхности трубы мы спроектировали модуль из 4 камер, которые обеспечивают полный круговой контроль, независимо от диаметра трубы. Добавили настраиваемую локальную подсветку, чтобы обеспечить чёткое изображение даже при нестабильном цеховом освещении.
3. Сбор и обучение на реальных данных
Клиент предоставил фотографии бракованных труб. Мы разметили ключевые дефекты: заусенцы, трещины, вмятины, поперечные швы, загрязнения. На их основе обучили нейросеть ML Sense — с учётом различных ракурсов, размеров и условий съемки.
4. Интеграция системы на линии
Провели монтаж камер и освещения, серверного блока и интеграцию в управляющую систему линии. Все компоненты защищены от пыли и механических воздействий — с учётом условий тяжёлого производства.
1. В зоне подачи труб на резку установлена точка контроля с четырьмя камерами — каждая контролирует свою сторону трубы.
2. Система анализирует поверхность трубы на наличие дефектов до подачи во фрезерный узел, когда труба еще находится в накопителе или движется по роликам. Детектируется 5 видов дефектов: заусенец, вмятина, масло, вертикальный шов, трещина шва.
3. При обнаружении дефекта срабатывает светозвуковая колонна, и линия автоматически останавливается до вмешательства оператора.
4. Для удобства контроля предусмотрен операторский интерфейс: в нём отображается видеопоток с камер в реальном времени, а все выявленные дефекты отмечаются визуально прямо на изображении. Это позволяет оператору быстро оценить ситуацию, подтвердить дефект и принять решение — убрать трубу или продолжить подачу.
5. Оператор извлекает трубу до попадания в зону резки.
Минимальный размер детектируемого дефекта: 1 мм.
Точность обнаружения дефектов: 80%.
Экономический эффект: